
AD-A234 528
Naval Research Laboratory
Washington, DC k0375-5000

NRL Memorandum Report 6778

BaRT Manual
Version 3.0

NAVEEN HOTA, CONNIE LOGGIA RAMSEY, Li Wu CHANG
AND LASHON B. BOOKER

Nav' Center for Applied Research on Artificial Intelligence

Information Technology Division

February 14, 1991

Approved for public release; distribution unlimited.

91 4 13 1"06

Form ApprovedREPORT DOCUMENTATION PAGE j MB No. 0704-0088

Pabl1c 'eortng burden for thi collectio of ifnformation is eitirmate" to average Ihoar der fesporse. inciudng the time for reviwing instructions, searchi'ng estung data sources,
gathertng and maintaining the data needed. and como tn and reviewing the collection of oformation Send comments regard~ng this burden est mate or any other asoeci of this
collection o f mform,,T~onnclading suggestions for reducing this burden to yWashinqton Headduarters Services. Directorate fr information Oerations and Reonrs 1215 Jefferson
Davos Hgfway. Sait 1204 Al flgtot'VA 22202-4302 and to the Office of Management and Badget Paperwork Redaction Project (0704-0188). Wiasnnngton. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I 1991 February 14 _____ ________

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

BaRT MANUAL 55-0230-0-1
Version 3.0 PE 62234N

6. AUTHOR(S)

Naveen Rota, Connie Loggia Ramsey TASK AREA
LiWu Chang, Lashon B. Booker R.S34-C74-000

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
ATTN: Code 5510 NRL Memorandum
4555 Overlook Avenue Report 6778
Washington, DC 20375-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 C5f)NSflRING / 10NTORINC.

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

BaRT is an inference engine which as been developed to aid in classification
problem solving. This inference engine uses Bayesian reasoning and can handle
problems associated with Incomplete and uncertain evidence. It has successfully
been used to perform ship classification. This manual describes how to load the
BaRvr program and how to use all of the available comands. This manual also pro-
vides some theoretical background and some implementation details concerning
BaRT.

14. SUBJECT TERMS 15. NUMBER OF PAGES

belief networks, Bayes probability, belief classification 48
influence diagram, diognostic support, belief commitment 16. PRICE CODE

probabilistic reasoninR, causal support, knowledgte _______________

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY C! ACIFICATIOR! "R)S ! I aA ON*Q OF ABSTRACT
OF RF~gPl? 0! T~1iS PA(Uk OF ABSTRACTI

I Unclassified I Unclassified I Unclassified SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

P-s r,bed bh ANSI SIC 139-B
298'102

CONTENTS

1. IN T R O D U C TIO N ... 1

2. KNOWLEDGE REPRESENTATION AND REASONING SCHEMES IN BaRT 1

2.1 Belief Networks 1
2.2 Taxonomic Hierarchies .. 3
2.3 Influence Diagrams .. 3

3. IMPLEMENTATION .. 4

3.1 General Conventions ... 4

4 . U SIN G B aR T .. 7

4.1 Compiling and Loading the BaRT Module .. 7
4.2 BaRT Windows and Commands ... 7

5. KNOWLEDGE ACQUISITION ... 14

5.1 Compiling and Loading the BaRT KA Module ... 15
5.2 Knowledge Acquisition Windows and Commands ... 15

6 . E X A M P L E ... 26

R E F E R E N C E S ... 29

APPENDIX A - Tensor Product Computation .. 31

APPENDIX B - Using the System Without the Graphic Interface 33

APPENDIX C - BaRT Functions Which Can be Called from Another Program 37

iii

BaRT MANUAL
VERSION 3.0

1. Introduction

Many real world problems are associated with uncertainty; the evidence people
observe which helps them to reason about some goal event is almost always uncertain
and incomplete. Still, people make judgments based on this uncertain and incomplete
evidence. These uncertain evidences can be combined in various ways to find the vali-
dity or strength of a hypothesis [6,8], and Bayesian probability theory is a normative
theory that allows one to reason about and combine uncertainties. Pearl[91 and others
have devised ways to represent, reason about and combine uncertain evidences in a
way that conforms to the tenets of probability theory, but avoids the disadvantages
usually associated with probabilistic computations of belief. BaRT is a Bayesian Rea-
soning Tool which implements some of these ideas. It has been implemented as an AI
programming environment and it has been used in a prototype decision aid to classify
ship images[l]. In BaRT, a problem is represented as a collection of networks called a
domain model. The domain model can have any number of related knowledge struc-
tures (networks). The belief in each value of each hypothesis in a network can change
as new evidence lends support to (or takes support away from) certain values of the
hypothesis.

The rest of this manual is organized as follows. Section 2 provides an overview
of the theoretical background for this work, and Section 3 provides some of the imple-
mentation details. Section 4 explains how to use BaRT and Section 5 explains how to
use the knowledge acquisition module. Section 6 provides an example.

2. Knowledge Representation and Reasoning Schemes in BaRT

2.1. Belief Networks

'2=5r_ networks provide a method for hierarchical probabilistic reasoning in
directed, acyclic graphs. Each r'ode in the network represents a discrete-valued
hypothesis which describes an aspect of the domain, and .ach node cnntoins informa-
tion about both the current belief of each value of the hypothesis and the most

Manuscript approved November 30, 1991.

Into m m l i i I~l i i N IlU l I m11

probable instantiation of the hypothesis given the evidence available, called the belief*
distribution. (The belief* distribution provides a way to determine how the various
degrees of belief in hypotheses can be interpreted. Generating a coherent explanation
involves the simultaneous acceptance of a set of hypotheses, a requirement that goes
beyond simply noting the degree of belief in any individual hypothesis. This means
that the problem solver must make a commitment in categorical terms about the best
way to instantiate each hypothesis variable based on the evidence available.) Each link
between two nodes represents a direct causal dependence between two of the
hypotheses, and the directionality of the link is from cause to manifestation. Each

node contains a tensor, of probabilities conditioned on the states of the causal vari-
ables; this tensor quantifies the relationship between a node and its parents (causes). It
is important to note that numbers used to quantify the relationship do not have to be
probabilities. All that is required is that the tensor entries are correct relative to each
other.

The belief updating scheme used in BaRT is based on Pearl's message passing
algorithm[6] for singly connected networks. It keeps track of two sources of support
for belief at each node: the diagnostic support derived from the evidence gathered by
descendants of the node and the causal support derived from evidence gathered by
parents of the node. Diagnostic support (X) provides the kind of information summar-
ized in a likelihood ratio for binary variables. Causal support (7) is the analogue of a
prior probability, summarizing the background knowledge lending support to a belief.
These two kinds of support are combined to compute the belief at a node with a com-
putation that generalizes the odds/likelihood version of Bayes' rule. Each source of
support is summarized by a separate local parameter, which makes it possible to per-
form diagnostic and causal inferences at the same time. These two local parameters (X
and it), together with the tensor of numbers quantifying the relationship between the
node and its parents, are all that is required to update beliefs. Incoming evidence per-
turb one or both of the support parameters for a node. This serves as an activation
signal, causing belief at that node to be recomputed and support for neighboring nodes
to be revised. The revised support is transmitted to the neighboring nodes, thereby
propagating the impact of the evidence. Propagation continues until the network
reaches equilibrium. The overall computation assigns a belief to each node that is
consistent with probability theory. Using a similar computation, similar supporting
factors (it* and X*) are used to find the belief* distribution. The equations for belief
and belief* updating are presented in Appendix A. The reader is referred to Pearl [91
for more details about the theoretical framework of this belief maintenance system.
BaRT cc-vewrt networks with loops into singly connected networks using Chang and

Fung's[10] node aggregation algorithm. Several auxiliary computations are also

1 A tensor is a mathematical object that is a generalization of a vector to higher orders. The
order of a tensor is the number of indices needed to specify an element. A vector is therefore
a tensor of order one and a matrix is a tensor of order two.

2

available in BaRT: Auxiliary variables to compute Boolean constraints and queries,
and an error-based measure of impact to gauge the potential effect an uninstantiated
node might have on the uncertainty of the target hypothesis [9].

2.2. Taxonomic Hierarchies

A taxonomic hierarchy represents sec-subset relationships; each child of a given
node represents a subset of that node. The leaf nodes of the hierarchy are a finite set

H = (hi, h2, M, ...)

of mutually exclusive and exhaustive constituent elements. Certain subsets of H can
be grouped to form a strict hierarchy in which each subset has one parent. The full set
H is then the root node of this tree, and intermediate nodes represent the disjunction of
their child nodes. Each node represents both a subset of H, and a hypothesis that is
true whenever exactly one of its constituent elements is true.

Several hierarchies, based on the same set H of constituents, can be used at the
same time in BaRT. These may have common leaf nodes, and the beliefs of all nodes
will be updated when evidence is entered into any of the networks. Belief updating in
taxonomic hierarchies is accomplished using Pearl's weight distribution/normalization
procedure. See [9] for more information on taxonomic hierarchies and belief updating
within them.

2.3. Influence Diagrams

An influence diagram is a belief network generalized to solve decision
problems(Cooper[3]). In addition to the regular chance nodes, an influence diagram
also has decision nodes and a value node. One of the goals in using an influence
diagram is to determine the decision alternatives that maximize expected value. Only
one value node is allowed in the network. BaRT solves influence diagram problems
by using Cooper's method[3] to convert the influence diagram into a belief network.
Cooper's algorithm recursively constructs and evaluates all paths in the decision tree
that corresponds to the influence diagram. The efficiency of BaRT implementation is
enhanced with a simple branch and bound technique. Before any path is explored,
BaRT makes an optimistic assumption about the expected value that will be computed
for that path. Whenever this optimistic bound is worse than the expected value of
some fully expanded alternative, the candidate path is pruned.

3

3. Implementation

BaRT is implemented in Common LISP and CLOS (Common Lisp Object Sys-
tem) and comes with a window interface on Symbolics and Sun work stations.
Presently it runs on Symbolics Genera 7.2, Lucid 2.1.3 and Lucid 3.0.

All of the core functions to run BaRT are defined in a package called bart which
is in the file named bart.lisp. This does not use any window function and can be run
on any machine with Common LISP. The functions in this file can be called from
LISP using the conventions described in Appendix C. A non-graphic user interface is
developed for use on any machine with Common LISP (see Appendix B); this code is
in the file bart-frame-tty.lisp. The graphic user interface (machine dependent) is
developed for two machines: Symbolics and Suns. The interface code for the Symbol-
ics is in the file bart-frame-3600.lisp and for the Sun it is in bart-frame-sun.lisp. The
name of the package containing the user interface functions is bart-frame. The object
definitions used in the BaRT routines are defined in the file bart-defs.lisp. All the gen-
eral utilities are in files bart-util.lisp, sym-util-all.lisp, and sun-util-all.lisp. Bart-
loops.lisp contains code to convert networks with loops into singly connected net-
works. Barr-rw.lisp contains code to write the loaded networks into an internal file
fff-bart-int where fff is the name of the input file.

The knowledge acquisition core functions are defined in a package called bart-ka
and reside in the file named bart-ka.lisp. These functions must be used with the
graphic interface on the Symbolics and Suns, and the graphic user interface code is in
the files bart-frame-3600-ka.lisp and bart-frame-sun-ka.lisp. General utilities are in the
files bart-util.lisp, sym-util-all.lisp and sun-util-all.lisp.

All the package definitions are in the file pkgdefs.lisp. The whole system is
defined in the file bart-defsys.lisp which must be loaded first.

3.1. General Conventions

There are several conventions when using the BaRT window interface. To
choose a command, the user should click-left on the command button. Clicking mid-
die on the command button will provide a brief documentation in a pop-up window.
After reading the documentation the user should press any character to get rid of that
window.

When one of several command options needs to be selected, a pop-up menu
appears with the options and the user has to click on one of these presented options
with the mouse. Moving the mouse away from the menu aborts the selection.

4

An input field for a particular piece of information is a line in a window begin-

ning with the name of the input item followed by a mouse sensitive field that car be

edited. All these fields are initially filled with some default values. To edit any va",e,

the user should click left on the mouse sensitive field. To enter a new value, the user

should remove the present value by killing whatever is there in this field (see edit
commands below) and enter a new value. The input mode for that field can be ended

by a carriage return <CR> (no matter where the mark is). Each field has an internal

buffer and only part of this buffer is visible in the field. Once the user gets to the

end/beginning of the visible field, then the visible field moves to the next/previous por-

tion of the current visible field of the buffer. A few editor commands are provided in

the input mode for the user to edit this field. They are as follows:

<Cntl>-a - move to the beginning of the visible field.

<Cntl>-e - move to the end of the visible field.

<Cntl>-p -- previous visible field of the buffer.

<Cntl>-n -- next visible field of the buffer.

<Cntl>-k -- kill from point to end of buffer.

<Cntl>-y -- yank from kill ring at point.

<Cntl>-l -- redisplay the field.

Backspace - remove a char before the mark.

Rubout - remove the char at the mark.

Besides Return, space can also be used to terminate input mode where it is

enough to recognize the end of input mode. For example, while typing just a number,
space can be user to terminate input, as spaces are not allowed inside numbers.

Some input items allow the user to select a value from an existing set of choices.

For a field expecting a boolean value, clicking on the field toggles the value of the

field. Likewise when the system is expecting the user to choose only one value among
a set of exclusive choices, it presents a box and a value for each choice. Selecting any

one value in them would deselect the other values. If the system is expecting a non

exclusive choice, the user can select as many choices from the presented set as he
wishes by clicking on each box of his choice. In all the above cases, the box in front

of the selected choice is filled to indicate that choice has been selected.

Whenever the system presents some temporary window with input fields, it also
presents two buttons: Done, and Abort. Pressing on Abort closes the window and none

of the changes made in that pane would take effect. Pressing on Done takes the new
values and closes that window. Associated with each field are a type and optionally a

function to check the validity of the input. Upon completion of the input, the system

first checks and sees if the user has given the correct input type. Then it would call the

function associated with this field with the current input as argument. If the given

input is not of the proper type or not valid, then an appropriate error message would

appear in the messages pane at the bottom of the window and lets the user correct the

input.

5

Sometimes a prompt may appear in the messages pane to get input from the user.
Usually this happens when the system needs to take only one value. In that case the
user should typc the new value in the messages pane in front of the prompt. Example:
when the system needs to get a file name, it would prompt the user in the messages
pane and then reads a new pathname.

The user needs to enter an expression while creating a query, constraint node and
while filling the joint conditional probability matrices in the knowledge acquisition
mode. Here the system reads the input, character by character, and parses the expres-
sion. This parsing has limited capabilities. Basically the expression can contain only
four tokens along with the node names and their values. The four tokens are and, or,
not, and equal. These can be substituted by the mathematical symbols &, I, ^, and =
respectively. The = token along with the node names and their values is used to con-
struct simple expressions. A simple expression is a list of exactly three elements. The
first element is the sign =. The second element is the name of a valid node. The third
element is the value name of the node name specified as the second element. An
example of a simple expression is (= Node-a Value-of-A). The boolean operators and,
or, and not can be used to construct compound expressions combining simple expres-
sions. An example of a compound expression is (& (I (= Nd-A Val2) (= Nd-C Vail))
(= Nd-B Val5)). While conbtructing query and constraint nodes, any node in the
current network is a valid node. The value name must be one of the values that the
node was given when it was defined for the network. All the node and value names
are case sensitive. The user should type the name as is and should not include double
quotes around names. When constructing matrices in knowledge acquisition mode,
valid nodes are only the current node and its parents. Here the user may give more
than one expression to fill the matrices. So the user can supply a number between 0
and 1.0 after each expression. The system takes all the expressions and makes a cond
statement with the expression part as the test and the number given as the number to
be used in filling the entries in the conditional probabilities. If no number is supplied
then it defaults to 1.0. After filling some or all entries in the conditional probability
matrix, the system would then normalize the values in each column. The user should
not supply this number while constructing query and constraint nodes and the number
is always taken as 1.0.

The mouse cursor is normally a north-west pointing arrow. This changes to a cir-
cle with cross hairs in it when the system is expecting the user to choose a node or a
location.

Note

Sometimes the mouse cursor on the SUN gets corrupted and won't return to the
normal north-west point arrow. In this case call (sun-util::reset-mouse-cursor) from the
lisp interaction pane to reset the mouse cursor to its normal shape.

6

The input the user gives is always case sensitive.

4. Using BaRT

A graphic interface has been deve!oped for Symbolics and Suns. (In order to run
the program without the graphic interface, the reader should see Appendix B.) To run
BaRT, the user should load the system and then choose the appropriate commands.
This is explained in detail below.

4.1. Compiling and Loading the BaRT module.

Symbolics: Get into a Common LISP environment with or without PCL. Edit the file
bart-defsys.lisp to indicate the directory where BaRT files reside. From the LISP
listener, load the file bart-defsys.lisp. If you just want to load the system then type
(load-bart). In this case it loads the appropriate source or binary fles of the system.
While loading these files, the system may load a file CLOS depending on whether PCL
is in the environment. Now, invoke the program by first pressing the Select key and
then pressing the Symbol, Shift and B keys simultaneously.

Sun: Edit the file bart-defsys.lisp to indicate the directory where BaRT files reside.
Then invoke Common LISP with or without PCL in a sunview window and load the
file bart-defsys.lisp. If you just want to load the system then type (load-bart). In this
case it loads the appropriate source or binary files of the system. While loading these
files, the system may load a file Clos depending on whether PCL is in the environ-
ment. Change to package bart-frame by typing (in-package 'bart-frame). Now,
invoke the window environment by typing (start-window). This creates a lisp pane in
an editor environment. Then invoke the program by typing (start-ban) in that lisp
pane.

To compile the system type (load-bart t). This compiles and loads the system after
compiling. It is strongly suggested that a disksave image be created for the Sun ver-
sion. To do this after the files have been compiled and loaded, type the command
(disksave "Bart" :restart-funcion #'bart-frame::start-all .full-gc r) before you invoke
the window environment

4.2. BaRT Windows and Commands

BaRT4Windows

After loading the BaRT system, the whole screen consists of eight windows: the title

pane, the belief network display pane, the constraint and query nodes pane, the global

system parameters pane, the command menu pane, the node/link information display

7

pane, the LISP interaction window, and the message window. The belief network
display pane, the constraint and query nodes pane, and the node/link information
display pane are all scrollable in the standard way for . machine. Figure I provides
a sample screen display.

The title window lies across the top of the screen and consists of the heading Bayesian
Reasoning Tool (BaRT) in boldface.

The belief network display pane is on the left hand side of the screen occupying a
large portion of the screen. This pane is used to display the networks of the current
domain model. Some of the nodes in the network may be grayed (depending on
whether the option to compute measure of impact is selected and whether a targetnode
has been selected for that network); the intensity of the grayness measures the entropy
(uncertainty) in the belief values of each node in the network as it relates to the target
node (i.e., how much influence changing the beliefs in that node will affect the beliefs
in the target node.)

The query and consr'aint display pane is on the top right hand side of the screen. This
is where the query and constraint nodes appear if any.

The giobal system parameters pane is right below the query and constraint display
pane and consists of two lines. The slot on the first line contains the current domain
model (this will be empty before loading the data file). The slot on the second line
contains the current knowledge structure. If the current knowledge structure name is
in boldface, then that network is in equilibrium; otherwise the network is not in equili-
brium. This distinction is useful when propagating the effect of new evidence in the
network in step mode, i.e., updating one node at a time.

The command menu pane is right below the global system parameters pane and con.
sists of the commands which are mouse sensitive and can be invoked by mouse-
clicking left on them. Mouse clicking right on these provides a brief documentation of
that command. All mouse-sensitive commands are highlighted when selected.

The nodellink infcrmation display pane is below the command menu pane and is used
to present information about nodes/links in the network.

In the bottom of the screen is the interaction window for normal interaction. Lisp
expressions can be evaluated in this pane on the SUN. On the Symbolics, the user
should press the SUSPEND key to get a top level lisp read-eval loop in this pane to try
any lisp expressions. During this time, none of the commands are active. The user
should press the CONTINUE key to get back from the suspend mode.

8

The message window is at the bottom of the screen and is used for displaying helpful
messages and also for taking same inputs such as a file name.

Top-Level BaRT Commands

There are several conventions when using the commands in BaRT. Please refer
to Section 3.1 (General Conventions). Unless otherwise specified, all the commands
are executed in the context of the current knowledge structure.

The possible command choices are:

Active-Strurture :
Allows the user to ch-inge the current knowledge structure to a different one
within the current domain model. A pop-up menu appears with the choices of all
of the knowledge structures within this domain model. (If there is only one
knowledge structure in the current domivi model, this command will not do any-
thing.)

Constraint:
Allows the user to add a constraint to the network by providing a boolean expres-
sion through a temporary menu. The boolean expression provided is set to true
and the belief distributions of the other nodes in the network are adjusted. (It
constrains the beliefs in the network to make the boolean expression true.) An
example boolean expression is:

(or (equal node-i True) (equal node-5 False))
Note that the node names and the values are always case sensitive. Please refer
to Section 3.1 (General Conventions) for syntax. The effects of the new con-
straint can be propagated through the network by clicking on Update. The user
can also choose to delete, disable or enable a constraint node. Disabling the node
leaves it in the system, but the effects are taken away, as if it did not exist. Ena-
bling the node brings the effects back again. Any of these operations would
bring the network out of equilibrium, so the user should click on Update to bring
the network into equilibrium again. Note that the name of the constraint node is
in boldface type when active and not in boldface type when not active.

Defaul -modes:
Allows the user to set available options. After clicking on this, a temporary
menu entitled Select Default Modes of all the user settable options appears. The
user can change any of these values by clicking left on them. The global options
appear with their present values in boldface. This command can be terminated by
clicking either on done to process the request or abort to ignore the request.
Step mode shows the propagation in steps, i.e., the system propagates one node at
a time. This is useful if the user wants to see the results after each update of a

9

node. Note that the user can tell whether the system has reached equilibrium; if
the current knowledge structure name in the global system parameters pane is in
boldface, then the network is in equilibrium.
Update belief* determines whether the belief* vector of each hypothesis is
updated when the system propagates the effect of new evidence.
Update lambda/pi determines whether the lambda and pis on each link is updated.
This always happens when the network doesn't have loops. This option is used
only for networks with loops; the lambdas and pis computed are approximate
values and the computation is not guaranteed to converge.
Compute measure of impact computes a factor at each node A which is a measure
of the uncertainty that can be reduced in the target node by adding evidence to
node A. BaRT computes a relevance-based measure described by Pearl[91 that
assigns weights to the hypothesis based on a square-error cost criterion. This
influence is shown by the intensity of grayness in the Belief Network Window.
Note that a target node has to be selected for these factors to be computed.
Display belief histogram determines whether the belief histogram for a node is
displayed in the node/link display window when a node is selected.
Maximum number of values to be displayed allows the user to see the top n
sorted values of the selected node (based on belief) in the node/link display pane.
The user can click-left on this field to edit this value. A value of 0 in this field
would display all of the values of a node. The default (0) is to display all of the
belief values.
Load Pathname allows the user to provide a default pathname for the directory of
files to be used. This should be given as a pathname such as:

/usr/prj/bart on a SUN
local:>bart>version3.0> on a Synbolics.

Delete-model :
Allows the user to delete the current model from the system. If there are any
other models loaded into the system, then it presents a pop-up menu of these
models allowing the user to choose a model to become the new current model.

Evidence :
Adds external evidence to or deletes the evidence from a node. After the user
clicks on Evidence a pop-up menu appears with several possible choices: add,
delete, read, or write, depending on whether evidence has previously been pro-
vided for this knowledge structure. The user should click-left on the appropriate
choice. If the usei- wants to add evidence, he should click on add and then on the
appropriate node. Now, another pop-up menu appears to add evidence using
either a Graphic scale or Numeric vector. If the user chooses Graphic scale a
menu appears which has the heading New Likelihood Ratio followed by the
node's name. (A sample screen menu for input of external evidence is shown in
Figure 2.) All of the values of the hypothesis are listed on the right hand side of

10

this menu. A scale is presented across the top with gradations of evidential sup-

port ranging from "Rule out" to "Affirms." The area under the scale heading has a

double arrow for each value which is initially placed under the position indicating

indifference (i.e. no evidential impact one way or the other). The user can indi-

cate the level of support (from the new external evidence) for each value by plac-

ing the cursor in the appropriate position and then mouse-clicking left, causing

the line with an arrow to be placed there. On the left of these scale areas are

numbers representing the numeric value of the selection. The user has the option

of choosing several modes for entering the evidence. The default scale has

Discrete intervals, and the marker will be placed under the closest interval grada-

tion to where the user clicks. The user can choose to make the scale discrete or

continuous by clicking left on Discrete or Continuous to change the option. The

numbers listed on top of the scale can be shown or hidden hy clicking left on

Show-scale or Hide-scale to change the option. The default is to show the scale.

Mouse-click left on either done to enter the new evidence into the system or

abort to ignore the change. The node to which external evidence has been added

will be shown in reversed video (white name on a dark background) in the Belief

Network Window. If the user chooses to enter the information as a Numeric Vec-

tor, a window will pop up to take a list of values. This window has two buttons:

done and abort. After entering the information the user should click on one of

these buttons. Clicking on done adds the given information as evidence to the

selected node and clicking on abort aborts it. Once these values are entered, the

effect of that evidence can be propagated by clicking on Update.

Read is used to read in a file of previous evidences for a particular knowledge

structure. The filename prompt appears in the message window. The system

then reads all the evidences present in this file and attaches them to the nodes in

the network. Once the evidence is entered, the effect of that evidence can be pro-

pagated by clicking on Update.

If evidence was previously entered, Delete can be used to delete the evidence.

The user should click on the node which he wants evidence deleted from. If

there is only one piece of evidence for this node, that evidence will be deleted. If

there are multiple pieces of evidence for this node, then a menu will pop up

which lists each evidence and also the string "all." The user can click on the

appropriate individual evidence he would like to delete or "all" to delete all evi-

dence from this node. Update should then be selected to bring the network hack

into equilibrium.

Again, if evidence was previously entered, Write can be used to save the current

evidences for the current knowledge structure in a file. A prompt for the file

name appears in the message window.

11

Any of the above operations brings the network out of equilibrium and the net-

work name appears in ordinary font in the global system parameters pane.

Exit-bart:
Exits from the program.

Load :
If more than one domain model is loaded into the system then a prompt would

appear asking whether to load a new model or just to select one of the models
already loaded. If the user chooses the option existing from this menu, then
another menu of all the loaded models would appear so the user can select one of
them. If the user wants to load a new model then it prompts for a data file and
loads it. If the data file is in the current directory, then just the name of the file
can be given at the end of the path provided. Otherwise, the pathname should be
provided. A BaRT data file fff can be stored in 3 different files: fff-bart.lisp fff-
bart-intlisp and fff-bart-int.bin. When the user provides the .lisp extension, then
the source file is loaded. When the user does not give an extension, the most
recent of the internal binary, internal source and regular source is loaded in that
order. When loading, BaRT performs all the necessary internal calculations,
brings the networks into equilibrium, and displays the domain model. In case of
a network with loops, BaRT first converts the given network into a singly con-
nected network and internally creates this converted network as an auxiliary net-
work. This auxiliary network is used in processing(updating) the given network
with loops. If the compile data file option in the default modes is on and if the
user is loading a source file, then besides loading the file, BaRT compiles the file
in an internal format suitable for BaRT to load next time and compiles this file
and saves it as filename-bart-int.lisp/bin.

Prior-prob :
Allows the user to provide prior probabilities for a selected top node in the

current knowledge structure. If a node is selected then a temporary window

appears to take the new prior probability and then changes the current prior pro-
bability of that top node to the newly given probability. This brings the network

out of equilibrium.

Node-info :
After zhoosing this, clicking on any node (chance, decision, value, constraint, or
query) displays the information about that node in the node/link display pane.

Depending on which user modes have been selected, a histogram of the belief

distribution for the values of a selected node may be displayed in addition to the

actual belief and belief* vectors, the external evidence for the node, and a brief
description of the node. A button Link Info would also appear in top right comer

12

of this pane. The user can then click on Link Info to see information displayed
such as the X, %*, 7c, and ,t* vectors associated with the links of this node and the
joint conditional probability matrices showing the relationship between the node
and its parents. To see the additional conditional probabilities if there is more
than one parent, click on Next in this window. Each entry in the matrix
represents the probability that the manifestation (child) has the value indicated in
that row given that the causes (parents) have the values indicated in that column.
The link information is displayed in a pop up window on the left hand side of the
screen (in the Belief Network Display pane.) When finished looking at the link
information, click on Link Info again to get back the network display.

Query :
This allows the user to determine the current belief in a given boolean expression.
After clicking on this, a window pops up in which the user can enter the name of
the query node, a boolean expression such as:

(or (equal node-i True) (equal node-2 False))
and the role. Note that the names of the nodes and the values are always case-
sensitive. Please refer to Section 3.1 (General Conventions) for syntax. Then the
user can Update to bring the network into equilibrium and then click on Node-
info for the query node to see the current belief in this expression as a list of
(true false) values. Note that this will not affect the belief distribution of the
other nodes in the network.

refresh :
Refreshes the display.

Reset :
Resets the current knowledge structure back to the initial equilibrium state so the
user can try a new run with new observations without loading and reinitializing.
Any constraint nodes will be disabled at this point (note that they are no longer in
boldface type), but they can be made active again by clicking on Constraint and
then Enable in the pop-up menu.

Targetnode :
Allows the user to select the target node associated with the option Compute
measure of impact within the Default-modes command. Compute measure of
impact computes a factor at each node which is a measure of the uncertainty that
can be reduced in the target node. This influence is shown by the intensity of
grayness for each node in the Belief Network Window. The darker the gray, the
more influence adding evidence to that node will have on the target node.

13

Update:
Brings the current knowledge structure into equilibrium and redisplays the infor-
mation.

Zoom :
Allows the nodes in the current domain model to be increased or decreased in
size. A menu pops up, and the user must click-left on the numeric field next to
the label zoom factor. The user should always type a positive number to change
the size of the nodes. These numbers always use the original size as the refer-
ence point, so the user should provide a number greater than one to increase the
size (e.g., 2 will double the size), a number greater than 0 but less than one to

decrease the size as compared to the original size, or I to return to the original
size. The user must click-left on done to process the request or on abort to
ignore the request. Note: when the scale factor is less than 1.0, the nodes drawn
won't have any names.

5. Knowledge Acquisition

This version of BaRT provides a graphics user interface for entering information
about the networks of a domain model. The user must enter the nodes of a network as
a unit, as described for each of the types of networks below. For both belief networks
and influence diagrams, each unit contains a current child node and all of its parents
and the joint conditional probability tensor representing the relationship between the
node and its parents. In the case of a Taxonomical hierarchy a unit is a node and its
children. Note that the user does not need to specify links here. For taxonomical
hierarchies there will not be any conditional probabilities between nodes. The belief
of a node is the sum of the beliefs of its children. Each node here represents a subset
of the set of mutually exclusive and exhaustive constituent elements over which the
taxonomy is defined. Constituent elements (components) can be defined in the joint
conditional probability (jcp) pane (which is used to take joint conditional probabilities
for regular belief networks and influence diagrams).

The definition of a unit was chosen because it allows one to focus on a local con-
tained relationship. For example, a node and all of its parents can be quantified locally
by the joint conditional probability tensor in belief networks in the BaRT model. A
complete network will then be a full distribution composed of these local unit relation-
ships.

14

5.1. Compiling and Loading the BaRT IA, module.

Symbolics: Get into a Common LISP environment with or without PCL. Edit the file
bart-defsys.lisp to indicate the directory where BaRT files reside. From the LISP
listener, load the file bart-defsys. If you just want to load the system, then type (load-
ka). In this case it loads the appropriate source or binary files of the system. Besides
the BaRT files, the system may load a file clos depending on whether PCL is in the
environment. Now, invoke the program by first pressing the Select key and then press-
ing the Symbol, Shift and E keys simultaneously.

Sun: Edit the file bart-defsys.lisp to indicate the directory where BaRT files reside.
Invoke Common LISP with or without PCL in a sunview window, and then load the
file bart-defsys. If you just want to load the system then type (/oad-ka). In this case it
loads the appropriate source or binary files of the system. Besides the BaRT files, the
system may load a file clos depending on whether PCL is in the environment. Change
to package bart-frame-ka by typing (in-package 'bart-frame-ka). Now, invoke the
window environment by typing (start-window). This creates a lisp pane in an editor
environment. Then invoke the program by typing (start-bart-ka) in that lisp pane.

To compile the system type (load-ka t). This compiles and loads the system after
compiling. It is strongly suggested that a disksave image be created for the Sun ver-
sion. To do this after the files have been compiled and loaded, type the command
(disksave "Bart-KA" :restart-function #'bart-frame-ka::start-all .full-gc r) before you
invoke the window environment

5.2. Knowledge Acquisition Windows and Commands

The screen consists of the following windows: the title pane with some command
buttons and the network name, the current node window, the parent/children nodes
window, the joint conditional probability window, the network display, and the mes-
sages window. The joint conditional probability window and the network display are
scrollable in the standard way for the machine. Figure 3 provides a sample screen
display. Note that all selections of buttons, commands, choices within a menu, or
nodes should be made by clicking left on the appropriate field. Please refer to Section
3.1 (General Conventions).

The title window contains the title Knowledge Acquisition Tool. Below the title on the
right hand side is the name of the current network being edited, if there is one yet.
Below the title on the left hand side are the following commands:

15

Default-modes
After clicking on this, a temporary menu entitled Select Default Modes of all the
user settable options appears. The user can change any of these values by click-
ing left on them. The global options appear with their present values in boldface.
This command can be terminated by clicking either on done to process the
request or abort to ignore the request. The options available are
Write ka file while saving bart file makes the system write a file in ka format also
when writing a file in bart format.
Data Pathname allows the user to provide a default directory for file pathnames.
This should be given as the directory-name portion of a pathname such as:

/usr/prj/bart/ on a SUN.
local:>bart>version3-0> on a Symbolics.

Delete-network
Allows the user to delete the current network if any. If more than one network is
loaded, then it lets the user choose a network and makes that network current.
Note that this will REMOVE the current network permanently from the system.

edit-network:
Allows the user to edit a new or existing network (which was defined or loaded
during this session.) If no network exists yet, a menu appears with choices for the
type of network: Belief Network, Influence Diagram or Taxonomic Hierarchy. If
there is already at least one network, then the choices for a new network and each
of the existing networks appear. If the user clicks on new, then the above three
choices for the type of network appear. When entering a new network, the user
must enter a name for this network in the messages pane. Simply type the name
followed by a Return. Now the name appears in the upper right hand comer of
the screen. The current network would be the chosen or new network.

load-file :
Allows the user to load an existing file which has been saved for future editing in
Knowledge Acquisition mode. A prompt for "Filename:" followed by the path-
name of the default directory appears in the messages screen. The user should
supply P new pathname, if necessary, with the name of the file. If the networks
within this file exist already in the current editing session, the user must choose
whether to replace each of the current networks with the networks in the file or
ignore the load. Note: a newly loaded network may not be the current network
unless the current network is being replaced or there is no current network.

save-file:
Prompts the user whether to save the networks in bart format or ka format or
both. Then it presents all the network names and a model name in case of
bart/both format and then saves those networks selected by the user in the chosen

16

format. The chosen networks in bart format are saved in a file fff-bart.lisp and in
ka format are saved in a file ff-ka.lisp where fff is the name supplied by the user.
Note: if the networks are not fully defined, then it can't save them in bart format.
In that case it gives an error message indicating that the network is not fully
defined.

exit :
Allows the user to exit from the knowledge acquisition tool.

The Current Node pane contains buttons necessary to edit the current unit as a whole.
It displays the current node. The following commands are available in this window:

abort :
The current edit-unit session will be aborted, and the network will be restored to
its previous state.

delete :
Allows the user to delete the current unit.

done :
The information of the current unit will be stored and the network will be
redrawn.

edit-unit :
Allows the user to create a new unit or modify an existing unit. After the user
clicks on this command, a pop-up menu will appear if there are existing nodes in
the network display pane. The user should click left on either new node or exist-
ing node depending on whether he wants to create a new unit or modify an exist-
ing unit. If existing node is chosen, then the user should mouse click on the node
that he wants to modify. Note that this pop-up menu will not appear if there are
no existing nodes yet. Depending on the type of network and the type of the
node several fields and a button would appear in this pane. All these fields can
be modified by mouse clicking on the value that appears in front of the field.
Clicking on the buttons would execute some function associated with that button
to produce some side effect. These fields and buttons are explained below.

Name: This field contains the name of the current unit. If this is a new node,
then this field initially has a unique default name.

Role: This is the documentation attached to this current node. The default value
for this field is a null string.

17

Values: This field represents the values that the current node can take. This
won't appear if the node is a value node or if the current network is a taxonomic
hierarchy. The default value of this field is boolean (True False).

Topnode: This is a button which toggles the current node to a top node or an
ordinary node. This is applicable to only belief networks and influence diagrams
except for decision nodes. Clicking on this button provides/removes another field
Prior. If the current unit has parents, then making the current unit a top node
generates an error. The user must delete all the parents before making the current
node a top node.

Prior: This represents the prior probability of the current node and consists of a
list of positive numbers between 0 and 1.0 that sum to 1.0. The number of ele-
ments in this list should be equal to the number of elements in the value field.

Tree Name: This represents the name of the tree the current node belongs to and
is applicable only for taxonomical hierarchies. Every hierarchy is defined as a col-
lection of one or more taxonomies.

Leaf node: This button is a toggle which makes the current node in a taxonomic
hierarchy an ordinary node or a leaf node. Making the current node a leaf node
would display the Components field in this pane. Again, as in topnode, the user
can make the current node a leafnode only if it doesn't have any children. Other-
wise it generates an error. The user must delete all the current node's children
before making it a leaf node.

Components: This is the subset of components that the current node is consisting
of. If no components are supplied then the system assumes this leaf node is a
component with a weight equal to 1.0. See also Edit component.

node-type :
Allows the user to switch among node types when editing an Influence Diagram.
A menu will appear with the choices chance node, value node or decision node.
Note that the appropriate input fields for information concerning this node will
appear after the choice is made. Also note that no more than one value node is
allowed in an influence diagram.

test-unit :
Allows the user to test the belief updating of a unit given the prior probabilities
for the top nodes of this unit, the conditional probabilities of the current node
with respect to its parents, and the evidence vector (i.e., the vector of current

18

evidence in support of each of the values of the effect node). After the user
clicks on this command, a pop-up window will appear in the bottom right hand
side of the screen. There will be slots for changing the prior for each top node
and the Evidence Vector. The conditional probabilities appear in the joint condi-
tional probability (jcp) pane and can be changed by the user. These conditional
probabilities are used along with the user editable prior/evidence fields in the pop
up menu to find the belief distribution of the current node. This is done whenever
the user clicks on Try in the menu. The belief distribution is displayed as a vec-
tor and as a histogram. The standard deviation of the belief values is also
displayed. The prior, evidence vector and the conditional probability entries can
be changed for further testing or the user can click on Done to stop testing. Note
that this is valid only for nodes in belief networks and influence diagrams except
decision nodes.

The Parent/Child Nodes pane contains buttons necessary to edit the parents/children of
the current unit. This pane presents information about the current nodes
children/parents and also provides three menu commands applicable for this pane. The
information displayed and the menu commands provided here depend on the type of
the current network. In case of taxonomic hierarchy the current nodes children would
appear in this pane and the menu contains add-child, delete-child and next child. Oth-
erwise the menu contains add-parent, delete-parent and next-parent and the current
nodes parents would appear in this pane. The information displayed in this pane is
described below.

Name: This is the name of the current parent or child.

Values: This field contains the values that this current parent takes and is not valid for
taxonomic hierarchies.

Tree Name: This field represents the tree name to which this current child belongs to
and is applicable only for taxonomic hierarchies.

Note: All the fields are editable if the current parent/child is being created now and are
not editable if it is a previously created node.

The commands that may appear in this pane's menu are:

add-parent :
Allows the user to add a new or an existing parent. A menu appears with the
choices of new and existing (unless there are no existing nodes in the Network
Display yet.) If the user clicks on existing node, he should then click on the

19

appropriate node which would then appear in this pane. Otherwise a new node
with default values will automatically appear in this pane. Note that the user will
not be able to change the information fields for an existing node chosen as a
parent. If the user would like to do this, this node should be chosen as the
Current Node in a new edit-unit session. This would appear only if the current
network is an influence diagram or a belief network.

delete-parent:
Allows the user to delete the parent currently displayed in the Current Nodes
window from the current unit. Note that if this node is also part of other units, it
will remain attached to those other units. This would appear only if the current
network is an influence diagram or a belief network.

next-parent :
Cycles through and displays the parents of the current unit. This would appear
only if the current network is an influence diagram or a belief network.

add-child :
Allows the user to add a new or an existing child. A menu appears with the two
choices of new and existing (unless there are no existing nodes in the Network
Display yet.) If the user clicks on existing node, he should then click on the
appropriate node which would then appear in this pane. Otherwise a new node
with default values would appear in this pane. Note that the user will not be able
to change the information fields for an existing node chosen as a child. If the
user would like to do this, this node should be chosen as the Current Node in a
new edit-unit session. This would appear only if the current network is a taxo-
nomic hierarchy.

delete-child :
Allows the user to delete the child currently displayed in this pane from the
current unit. Note that if this node is also part of other units, it will remain
attached to those other units. This would appear only if the current network is a
taxonomic hierarchy.

next-child :
Cycles through and displays the children of the current unit. This would appear
only if the current network is a taxonomic hierarchy.

The joint conditional probability (jcp) pane at the bottom left of the screen is used
differently depending on the kind of current network. It has a display pane and a menu

20

pane and the commands that appear in this menu are different and are explained here.
If the current network is a taxonomic hierarchy then the menu pane consists of 4 but-
tons: Delete component, edit component, Ignore, and Save.

Delete Component :
This lets the user select a component from the display using the mouse and
deletes that component

Edit component :
This button allows the user to either create a new component or edit an existing
component. If there are any components previously defined, then a pop-up menu
appears letting the user select whether he wants to edit an existing component or
a new one. in the case of an existing component, the user mouse selects the com-
ponent that needs to be edited. Otherwise a new component appears with some
defaults. The display pane originally before editing any component, displays all
the components defined so far. Once the user creates/edits a component, it
displays two fields: Name and Weight in this pane. The values of both the fields
can be changed by mouse clicking on them.

Name: This field contains the name of the current component.

Weight: This field contains a number representing the weight of that component.
The initial weight is always 1.0. Once the network is fully defined, all the weights
associated with the components are normalized and used as prior probabilities.

Ignore:
Ignores the current component and any changes made would be ignored.

Save :
This saves the current component.

If the network is not a taxonomic hierarchy then the following is applicable. The Con-
ditional Probabilities pane contains buttons necessary to edit the conditional probability
tensor of the current unit. Once the user selects a way (explained later in the com-
mands) to give information about the conditional probabilities, a table of mouse sensi-
tive fields, with proper headings appear in this pane. Each field can take a number
between 0 and 1.0. The values of the child (manifestation) node are always listed on
the left as row labels for a matrix. The values of the parent nodes are on the top as
column labels for the matrix. An entry in the matrix indicates the probability that the
child node has the value listed in that row given that the parent nodes have the values
listed in that column. When clicking left on any of ,he matrix entries to change them,
the user enters the editing phase. Then he can enter a new number. Note that the user

21

doesn't have to kill the previously displayed value to enter a new number as is the
case everywhere else while editing a field. The sum of all the numbers in each
column (ie. the total probability of a particular child state given a set of parent states)
must always be 1.0 (or within the interval [l-e, 14-c). Initially all the fields of a
column have default values. Default values are enclosed by [] brackets. Once the user
fills one field, then the remaining fields in that column are always adjusted so that the
total would be 1.0. This is done by distributing the residue (1.0 - sum of all the user
given numbers in that row) equally to default values. If the sum of all the user given
numbers in a column is more than 1.0, then all the numbers in the column would be
reset to the default value of 1.0 divided by the number of entries in that column. To
get to the next entry in this matrix or just to finish the input for the present entry, hit
Return. To get to another specific entry click left on that entry. The user must click
middle or right to come out of the edit phase. Since all of the table may not be visible
in this window, the window scrolls automatically to keep the current field and its
neighbors visible.

This pane contains six commands: Joint-prob, Pairwise, Values, Noisy-gate, Set-vals,
Next. The user can provide the information about conditional probabilities using these
commands. These are explained below:

Joint-Prob :
Allows the user to enter the complete joint conditional probability tensor between
the current node and all of its parent nodes. A reasonable parent (preferably one
with 3 or 4 values) is picked as the focus, meaning that the values for the other
parents are set while the values for the focus parent vary in each sub-matrix
displayed. To get to the next sub-matrix where the other parents have the next
set configuration of values, the user should click left on the Next button. Please
see the function of that button. This command is not valid for a value node in an
influence diagram.

Pairwise :
Allows the user to enter conditional probabilities between the current node and
each of its parents. Then these individual conditional probabilities are combined
at save time using the type of gate (see Noisy-gates) selected by the user to form
the joint conditional probability distribution. This command is not valid for a
value node in an influence diagram.

Values :
Allows the user to give value information about the value node in an Influence
Diagram for each state of its parents. Valid only for value nodes in an influence
diagram. In this case the numbers in the jcp pane need not be between 0 and 1.0.

22

Selecting any of the above three commands would bring a matrix of values in to the
joint conditional probability pane. Depending on the number of parents, only part of
the full matrix (distribution) is brought into this pane. The next three commands are
useful in filling some values in this matrix or to choose a gate or to go to the next sub-
matrix and are explained below.

Noisy-gate :
When the user chooses to give pairwise conditional probabilities, a type of gate is
required to combine them to form the joint conditional probabilities. This button
allows the user to choose the gate type from the set (Or, And, And+, And-). The
Or gate is to specify that any one parent state can cause a change in the value of
the current node irrespective of the states of the other parents. The And gate
assumes that the parents are totally independent and there is no interaction
between them. These two gates are explained in detail in [9]. The other two
gates And+, And- are used to indicate highly positive and highly negative correla-
tion between parent states. These gates are explained in [121. The default gate is
And.

Set-vals :
Once a submatrix is present in the jcp pane, the user can use this command to
change some of the fields. A pop-up menu containing Identity, uniform, and
expression would appear. The user can select one of these to change the fields.

Identity:
This would appear in the menu only if the number of rows and the number of
columns of the submatrix present in the jcp pane are equal. Selecting this would
change the submatrix to an identity matrix.

Uniform:
Selecting this would change the values of all the entries in the present submatrix
to the value of 1.0 divided by the total number of entries in that column.

Expression:
This would present a variable value menu with 15 slots to take eq.ations and an
exclusive choice of Local and Global. The Local, Global slot is to indicate
whether the change should take place only in the submatrix present in the win-
dow or to the whole underlying matrix. This is applicable only if the user is giv-
ing joint conditional probabilities. For pairwise probabilities, this won't be
present. Each of the equations field takes an equation and a number between 0
and 1.0. For example, "(& (= Coma True) C (= Calcium False))) .5" means that
if Coma is True and Calcium is not False then set the value of that entry to 0.5.
The system goes through these equations in the order given and sets the value of
each entry to the number associated with the first satisfied equation. If none of the
equations are satisfied, then it won't change that entry. Optionally just a number
can also be given as the last equation, in which case that tiumber would be used
if none of the previous equations are satisfied for an entry as a true clause in a

23

cond statement. Once the entries are changed, then each column is normralized
and these are the values that would be present in the jcp pane.

Instead of typing a number(same) in each entry, the above 3 methods allow the user to
change several values in the jcp pane. Then if the user wants to change a particular
entry, he can click left on that entry to change it.

Next :
This button is used to cycle through the next submatrix of values to change, and
to change the focus and configuration. Clicking left would put the next submatrix
to be changed in the window. Clicking middle allows the user to change the
focus/configuration. In case of pairwise probabilities, a pop-up menu of the
remaining parents would appear and the user can select one of them. The selected
parent would be the new focus. In case of joint probabilities, another menu
appears where the focus or the configuration of the other parents can be changed.
Configuration can be changed by clicking on the boxes with arrows in them. The
focus can be changed by clicking on the Change-focus button. Then a pop up
menu appears with all the parent names and the user can select one of them as
the new focus. Finally click on Done to get back to editing the probabilities.

The network display pane is on the bottom right hand side of the screen occupying a
large portion of the screen. This pane is used to display the current pieces of the
current networks (subnetworks) which consist of nodes and their links. The following
commands allow the user to move the nodes' positions:

Redraw :
Refreshes the screen.

Move-nodes :
Allows the user to move one or more nodes to a different location. After clicking
on the command, the user should click-left on the appropriate node(s) and then
click-middle on the spot where the first node selected by the mouse left click
should be placed. Clicking right aborts this command.

Move-subnet :
Allows the user to move one subnet to a different location. After clicking on the
command, the user should click-left on a node of the subnet and then click-
middle on the spot where the node (and all its children in that subnet) should be
placed. Clicking right aborts this command.

24

In the bottom of the screen is the Interaction window for normal interaction. Lisp
expressions can be evaluated in this pane on the SUN. On the Symbolics, the user
should press the SUSPEND key to get a top level lisp read-eval loop in this pane to try
any lisp expressions. During this time, none of the commands are active. The user
should press the CONTINUE key to get back from the suspend mode.

The message pane at the bottom of the screen displays messages when necessary (i.e.,
if something is incorrect or if something might be unclear). Prompts for file names
will also appear here.

25

6. Example

This example will show the user how to build a medical information network
using the knowledge acquisition module and then how to load this into BaRT and run
the system by using various commands. Refer to the previous sections on BaRT com-
mands and Knowledge Acquisition commands while doing this. See Figure 3 for a
picture of the network being defined.

First, invoke the knowledge acquisition module (see chapter 5). Click on edit-

network and then on the choice Belief Network in the pop up menu. Now enter the
Network Name medl in the messages buffer. At this point, the user can start entering
information at any point in the network that he is comfortable with. We will start with
the top nodes and work our way down. Remember a unit is a node and all of its

parents, so a top node is a one-node unit. Click on edit-unit to provide the only top
node in the Effect Node pane. Now the Effect Node pane contains 3 fields with their
names and default values and a button. Position the mouse on the field in front of the
Name. A box will highlight this field. Click on this field. Press <cntr> k to remove the

existing default value and enter the name Cancer and hit return. There is no need to
provide values here; the default of True False is what we would like here. Click on
the role field and enter a brief description of the node if you would like. Now click
on the top node button which presents the Prior Probs field. Click on this field and
enter the list of prior probabilities for this node (02 0.8). Now click on Done. The
network pane will now display this node.

Now we will enter the node Tumor. Again, click on edit-unit and then on New
Node in the pop up menu. Click on the name field and enter the name Tumor. Again,
the default for the Values field is appropriate. Now click on Add-parent in the Cause
Nodes pane. Click on the choice existing node since the parent has already been
defined and then click on the Cancer node in the netwerk pane. Now click on the
choice Joint-Prob in the Conditional Probabilities window. Now the JCP window con-
tains a table of mouse sensitive default joint conditional probabilities. Enter 0.2 0.8 in
the first column and 0.05 0.95 in the second column. To enter these numbers, just
click on the appropriate entry in the matrix. The chosen cell would be displayed in

reverse video indicating that it is in edit mode so the user can enter a new value in
that cell. Enter a new number and hit Return. Then the system would accept the new
number (if it is a valid number) and updates the other default values in the same

column so that the total would add up to 1.0 (or within the interval [l-c, l+c]). Then
the system positions itself on the next cell for the user to enter a new number. The

user can hit return without giving any new number to keep the existing value. In that

case, the system moves to the next editable cell for the user to modify. The numbers

entered mean that the probability that the patient has a tumor given that the patient has
cancer is .2, the probability the patient does not have a tumor given that the patient has
cancer is .8, etc. After the new values are entered, click on middle or right to get out

26

of the current edit mode. This pane is a scrollable pane and can be moved with the
mouse to see other values. Once the conditional probabilities are entered, click on
Done in the Effect Node menu pane. This would create another node Tumor connected
to the previously created Cancer node in the network pane.

Similarly, enter the node Calcium. Leave the values as True False, and add the
existing parent Cancer. Here the Joint Conditional Probabilities are 0.8 0.2 for the
first column and 0.2 0.8 for the second column.

Now we will enter the node Coma. Enter the name, values (which can be left at
the default) and role (optional). Now, add the two existing parents Calcium and
Tumor. Now click on Joint-Prob. The values of Calcium will vary as ore value of
Tumor is held constant for each piece of the matrix to be entered. First, the value of
Tumor is set at True. Enter 0.8 0.2 in the first column. and 0.8 02 in the second
column.

Instead of entering these numbers straight, let's use some of the system's capabil-
ities to fill them. Click on Set-vals and click on identity in the pop-up menu. Observe
that the matrix diplayed is an identity matrix in the jcp pane. Again click on Set-vals
and click on Uniform in the pop-up menu. See that all the values in matrix are equal.
Click on Set-vals and click on Expression in the pop-up menu this time. This would
present a pop-up menu with 15 expression fields, and an exclusive choice of local or
global. The system creates the conditional probability matrix satisfying the given
expressions. When more than one parent is present, the jcp pane presents only a sub-
matrix instead of the entire matrix of conditional probabilities. The local and global
option is useful to specify whether to fill the sub-matrix displayed or the entire under-
lying matrix of conditional probabilities satisfying the given the expressions. The
expressions internally form a cond statement. Each expression field takes an expression
and a number. Optionally one can have just a number without an expression as the last
expression indicating the default number in case all the expressions given before fail.
Initially the jcp presented in the menu has some (previous or default) values. The sys-
tem evaluates each expression in the viven order (from top to bottom) and changes
those entries satisfying the first expression from the top and fills those cells with the
value associated with that expression. The syntax of this expression is explained in
Section 3.1 (General Conventions). In the present case type these two expressions in
this pop up menu. Choose locally to change the entries only for the sub-matrix
displayed in the jcp pane. The two expressions are

(= Calcium True) .8
(= Calcium False) .2

After giving the expressions, and choosing the local option, click on Done. This should
update the sub-matrix in the jcp pane to have (.8 .2) in each column. Then click on
Next. Now, the value of Tumor is set at False. Enter 0.8 0.2 in the first column, and
0.05 0.95 in the second column. Then click middle or right. Then click on Done in

the Effect node pane menu.

27

Now enter the last node Headaches. Again enter the name, values (leave as True
False), and role. Add the parent Tumor. Now click on Joint-Prob and add the Joint
Conditional Probabilities by entering 0.8 02 in the first column, and 0.6 0.4 in the
second column. Then click middle or right and then click on Done.

Now that the network is complete, save it for running in BaRT. Click on save-
file and select Both in the pop up menu and then type in the name medical.lisp (fol-
lowed by a keturn) as the file name in the messages window. The system would
present another menu with all the networks defined so far and with a Model Name. Fill
in the model name with Cancer-diag and select the network (only one defined so far).
Then click on Done. Then the system would store two files: medical-ka.lisp suitable to
load into the KA for future editing, and medical-bart.lisp suitable to load into BaRT.
Note that throughout this editing, the system complains whenever it sees an error and
gives the user an opportunity to correct iL Now exit the knowledge acquisition
module by clicking on exit.

Now, invoke the BaRT module (see chapter 4). Now click on load and enter
medical for the file name prompt at the bottom of the window. The system then loads
the medical-bart.lisp file. Initially BaRT performs a number of internal calculations and
brings the network into equilibrium. If any of the networks in the file contain loops, it
also converts them into singly connected networks. After this initial processing is
done it saves the states of the networks loaded into a file medical-bart-int.lisp first and
then compiles it and saves the binary file in medical-bart-int.lbin. This way the sys-
tem loads this internal file next time without the initial processing overhead. BaRT
saves these internal files depending on the system option compiler data file. After
loading the file, the system presents the network in the network display pane.

First, look at the top node in the network, Cancer. (Click on Node-info and then
on the node Cancer.) Now we will provide some evidence to a node in the network.
Click on Evidence and then on Add from the pop up menu provided. Now click on
the node Headaches in the Belief Network Display window. Click on the choice
Likelihood Ratio. Now a window pops up with a scale for entering support for the
various values of this node. Say that the patient has indicated that he does indeed
have frequent headaches. So, click all the way on the right of the scale for Affirms in
the row for True and click all the way on the left of the scale for Ruleout in the row
for False. Click on Done in this window. Note that the node Headaches is now
highlighted to show it has evidence attached. Also, the Current Knowledge Structure
is no longer in boldface type, showing the network is not in equilibrium. Now click
on Update to propagate the effects of the new evidence. Now look at the Cancer node
again in the Node/Link information display pane and note that the belief in At has
changed.

28

Now let's add a constraint node to this network. Click on Constraint and then
Add from the pop up menu provided. A window appears for providing information for
this new node. Click on the name slot (to the right of the word Name) and type in the
name Cnstrl. Click on the Expression field and type in the expression: (or (equal
Coma False) (equal Calcium True)) to indicate that either the patient is not in a coma
or he has a high calcium level. This is a boolean expression set to True which now
constrains the network. Now Click on Done. Click on Update to propagate the
effects of this constraint through the network. Note the effect on the beliefs in the
values of the Cancer node. Now disable this node by clicking on Constraint, then
Disable in the pop up menu, and then the Constraint node. Note that this node is no
longer in boldface type. Click on Update and note that the beliefs in the values of the
Cancer node revert to the previous values. Try enabling the constraint again, and then
click on Node-info and then on the constraint node to see that this node is indeed an
active node once again. Now click on Reset and note that the evidence is removed
from this network and the constraint node is disabled. Try adding more evidence, con-
straint nodes and query nodes and play with removing some of them, noting the effects
on beliefs in the values of various nodes.

The current version of BaRT comes with an example data file called
examplel.lisp (examplel-ka.lisp and examplel-bart.lisp) which also includes this medi-
cal network we defined here. It is a domain model with three belief networks. The
user is strongly recommended to load this file and tiy out the different commands on
it.

References

1. Booker, L. B. and Hota, N., Probabilistic Reasoning About Ship Images. In J.
Lemmer and L. Kanal (Eds.) Uncertainty in Artificial Intelligence 2. Amsterdam:
North-Holland, 1988.

2. Booker, L. B., Hota, N. and Hemphill, G., Implementing a Bayesian Scheme for
Revising Belief Commitments. Proceedings of the 3rd AAAI Workshop on
Uncertainty in Artificial Intelligence, Seattle, WA, July 10-12, 1987, p.3 4 8-354.

3 Cooper, G. F., A Method for Using Belief Networks as Influence Diagrams.
Proceedings of the Fourth Workshop on Uncertainty in Artificial Intelligence (pp.
55-63), Minneapolis, MN, 1988.

4. Kim, J., CONVINCE: A CONVersational INference Consolidation Engine. Ph.D.
Dissertation, University of California, Los Angeles, 1983.

5. Kim, J. and Pearl, J., A Computation Model for Combined Causal and Diagnostic
Reasoning in Inference Systems, Proceedings of IJCAI-83, Los Angeles, CA,
August 1983, p. 19 0 -19 3 .

29

6. Pearl, J., Fusion, Propagation, and Structuring in Belief Networks, Artificial Intel-
ligence, Vol 9, p.241-288, 1986.

7. Pearl, J., Distributed Revision of Belief Commitment in Multi-Hypotheses
Interpretation. Proceedings of the 2nd AAAI Workshop on Uncertainty in
Artificial Intelligence, Philadelphia, PA, August 8-10, 1986, p.201-209.

8. Shafer, G., Tversky, A., Languages and Designs for Probability Judgernent. Cog-
nitive Science, Vol 9, p.309-339, 1985.

9 Pearl, J., Probabilistic reasoning in intelligent systems: Networks of plausible

inference. San Mateo, CA: Morgan Kaufmann, 1988.

10 Chang, K. and Fung, R., Node Aggregation for Distributed Inference in Bayesian

Networks. Proceedings of the Eleventh International Conference on Artificial

Intelligence. Detroit, MI: Morgan Kaufmann, 1989.

11. Geffner, H. and Pearl, J., Distributed Diagnosis of Systems with Multiple Faults.

Technical Report CSD-860023, Computer Science Department, University of Cal-
ifornia, Los Angeles, CA, December 1986.

12 Bonissone, P. and Decker, K., Selecting uncertainty calculi and granularity: an

experiment in trading off precision and complexity. In L. Kanal and J. Lemmer

(Eds.) Uncertainty in Artificial Intelligence. Amsterdam: North-Holland, 1986.

30

Appendix A

Tensor Product Computation

A tensor is a mathematical object that is a generalization of a vector to higher
orders. The order of a tensor is the number of indices needed to specify an element.
A vector is therefore a uzaisor of order one and a matrix is a tensor of order two.
Three standard operations defined on tensors are relevant to this discussion:

Term Product The term product is defined between two tensors A and B hav-
ing the same indices. Each element in the resulting tensor C is simply the pro-
duct of the elements with the corresponding indices from A and B.

C=A*B where cil..., =a 1... i xbi...i.

Outer Product The outer product of two tensors A and B having order m and
n respectively is a tensor C of order m+n. Each element of C is the product of
the elements of A and B whose aggregate indices correspond to its own indices.

C=AoB where ci ...i, j, = ai, ... i x bj, ...

Inner Product The inner product of two tensors A and B is a tensor formed by
taking the outer product of A and B and then summing up over common indices
that appear both in A and B. If A is of order m, B is of order n and they have k
common indices then the inner product C is a tensor of order (m-k)+(n-k).

C =A oB where ci,... . ail_..i._, ...i, x bts... Ijl...j._&

Equations

Let Xyj, X;,, nu,, and 4, be vectors (or, equivalently, tensors of order 1) whose

elements are the messages a node X receives from its children and its parents respec-
tively:

= [Xyj(x 1),""", x?.(x,)] where r is the number of possible values for X

;= (X;(x.) '. .rX,)] where r is the number of possible values for X

= rnx (U)"• .- tx(ui,ci)] where r(i) is the number of possible values for U,

4i = [(u) , ltx(ui,()] where r(i) is the number of possible values for Ui

The term product of all Ari vectors is another vector A of length r given by

A = Xy "'*r. = nxr i),'". X .,

The term product of all ;L. vectors is another vector A* of length r given by

A ... = (..

31

The outer product of all xu, vectors is a tensor 1i of order n given by

Xul o .-. oct. where icl ... k. = ftx(U ,)
8=l

The outer product of all x, vectors is a tensor r of order n given by

I" = 0 ... o 4. where . = I u,
i=1

We can consider the set of fixed probabilities P(x I u, •u.) as elements of a tensor P
of order n+1. Now if we compute the inner product of P with n we obtain a tensor of
order 1 (the indices for the Ui are common to both tensors):
P-I= 0 , .- I. ,. l'(. ,,.....iltx (uo,)', ,-- - ... I P(X, uiI,...,u4 .)ftx(Ui,)

- -ink=1ii- - -ink=1

If we make the summation operator explicit, we can rewrite the formula as

P 0.P I _, (x I, u,.....)ftx(,,) , - • • , I P(Xu,... ,u.)Iljtxx(u
-1 ' i. n k=1 i l . i k=1

We can now denote the formula for BEL as

BEL= cxA * (Po*+H)

If we compute the inner product of P with n' we obtain a tensor of order 1:

Pon* I 114. UiJ .. , ;(ui,) • • •I ,s,,, . ,w)f ,tn;(u,)
S•""",in 1,=! il in " ""=

The BEL* computation requires us to maximize over all elements uk rather than taking
a sum, so we can redefine the inner product operator as a maximize operator, and we
can denote this new inner product with the symbol .,,.

P 9M f" = max P(xI l' .)ft;("o . max P(xr I u, .iJIR;(Ui,)
1',' ,.k=1 i1,''' . k=l

Now the BEL'(x) computation can be written in tensor notation as

BEL' = a An * (Pl *,,, *)

Moreover, it is clear that we can use similar methods to compute the messages that
node X will send to its neighbors. The vector xyr destined for child Y, can be com-

puted by term-by-term division of the elements of BEL by the elements of XI, and the

vector X;, can be computed by term-by-term division of the elements of BEL by the

elements of ; . The vector -x destined for parent U can be computed just like BEL

except that we replace the vector tu, with a unit vector (1 ,-- , 1) of equal length

when computing the outer product HI, and the vector X; can be computed just like
BEL except that we replace the vector xc, with a unit vector (1 . , 1) of equal length

when computing the outer product l*.

32

Appendix B - Using the System without the Graphic Interface

BaRT can be run without the graphic interface. The user must get into a Com-
mon LISP environment with or without PCL. Load the file bart-defsys.lisp. Then type
(load-bart-gen t) to load the system. This loads all the required files. The optional
argument is to specify whether to compile files where needed. Along with the bart sys-
tem this may load a file clos depending on whether PCL is already loaded. The bart
system files that would be loaded are pkgdefs, bart-util, bart-loops, bart, bart-rw,
bart-frame-ny. Now, type the command (in-package 'bart-frame).

After loading a data file using gen-load, the following LISP functions can be
invoked. All these functions take optional arguments and in the absence of these argu-
ments, the system would prompt the user. The description of these functions are the
same as the descriptions of the corresponding bart commands presented in chapter 4.
Instead of using a graphic interface, these commands just prompt and take a value
where needed. All the functions have a "gen" prepended to the corresponding com-
mand name. If the bart window interface command has subcommands then the
corresponding functions are given here. For example, the command constraint has 4
subcommands: Add, Delete, Enable, Disable. The corresponding 4 functions are gen-
add-constraint, gen-delete-constraint, gen-enable-consrraint, gen-disable-constraint. All
net/node/link/model/value names, when passed as arguments, must be strings although
the user can omit the quotes when the system prompts for these values. A brief
description of these functions is given here.

gen-active-structure :
Optional Arguments: a network name(knowledge structure name) which is of
type string.
Synopsis: (gen-active- structure)
Description: This function allows the user to make a given knowledge structure
current in the current model.

gen-add-constraint :
Optional Arguments: a constraint name and an expression. Both are of type
string.
Synopsis: (gen-add-constraint "cnstl" (& (= nd-A val2) (= nd-B val5))")
Description: This function adds a constraint satisfying the given expression.

gen-delete-constraint

gen-enable-constraint:

gen-disable-constraint:
Optional Arguments: a constraint name which is of type string.
Synopsis: (gen-delete-constraint "Cnst-l")

33

Description: These functions delete/enable/disable a constraint.

Since the command Default-modes presents a menu and lets the user set the values of
some options in the program, several functions are provided here, one for each option
in this menu to set their values.

gen-set-step-mode•

gen-set.update-belief*•

gen-set-update-lambda-pis•

gen-set.compute-Tneasures-of-impact•

gen-set-compile-data-file :
Optional Arguments: new value that this should be set to. This is of type boolean
(t nil).
Synopsis: (gen-set-update-belief*)
Description: All these functions set that optional to the supplied value. If the
argument is not supplied, then it toggles the current option. Note: if the argument
is not supplied the system won't prompt for the argument. Instead it toggles the
current option.

gen-set-data-pathname:
Optional Arguments: a pathname which is of type pathname.
Synopsis: (gen-set-data-pathname "local:>dirl:>dir2>") on the symbolics. Like
wise (gen-set-data-pathname "usr/dirl/dir2/") on the sun.
Description: This function sets the current default data pathname to the given
pathname.

gen-delete-model:
Optional Arguments: a new model name which is of type string. This name
should be a valid model name.
Synopsis. (gen-delete-model "model-3")
Description: This function deletes the current model and then sets the current
model to the supplied model name.

gen-add-evidence :
Optional Arguments: a valid node name and new evidence. Node name is of
type string. New evidence is a list of numbers between 0.0 and 1.0 such that the
sum of all these numbers equal to 1.0 and the total number of numbers should be
equal to the cardinality(number of values that the node takes) of the node.
Synopsis: (gen-add-evidence "node-A" '(.25 .5 .25))
Description: This function adds the evidence to the node.

gen-delete-evidence•
Optional Arguments: a node name and an integer. The node name is of type
string.

34

Synopsis: (gen-delete-evidence "node-A" 0)
Description: This function deletes the nth (second argument) evidence from the
node. The integer as the second argument indicates which evidence to delete.
The numbers are chronological. 1 is for the first evidence entered, 2 for the
second evidence entered etc. 0 is to indicate all the evidences at this node.

gen-read-evidence :
Optional Arguments: a file name which is of type pathname.
Synopsis: (gen-read-evidence "evidences-file.lisp")
Description: This function reads the supplied file which contains evidences to
nodes in the current network.

gen-write-evidence :
Optional Arguments: a file name which is of type pathname.
Synopsis: (gen-write-evidence "evidence-file.lisp")
Description: This function writes all the evidences entered so far for the current
network into that file.

gen-load-flie :
Optional Arguments: a file name which is of type pathname.
Synopsis: (gen-load-file "inputfile")
Description: This function loads the given data file. If that is not an internal file,
it may create an internal file depending on the compile-file option.

gen-load-model :
Optional Arguments: a model name which is of type string.
Synopsis: (gen-load-model "model3")
Description: This function makes the given previously loaded model current. The
model must be previously loaded.

gen-prior-probs :
Optional Arguments: a node name and its new prior probability. The node name
is of type string, and the prior probability is a list of numbers between 0.0 and
1.0. The number of elements in the list should be equal to the cardinality of the
given node and the sum of these numbers should be equal to 1.0.
Synopsis: (gen-prior-prob "node-C" '(.2 .3 .5))
Description: This function sets the prior probability of the given node to the new
prior probability supplied. If the current network is a network with loops, it also
finds new relationships in the auxiliary network. Reconfiguring the relationships
(JCPs) in the auxiliary network may take some time.

35

gen-node-info•
Optional Arguments: a node name which is of type string.
Synopsis: (gen-node-info "node-C")
Description: This function presents information about the selected node and all
the links that this node is attached to.

gen-add-query :
Optional Arguments: a query node name and an expression. Both the arguments
are of type string.
Synopsis: (gen-add-query "Quer-nd-l" "(and (= node-A vail) (= node-B val3))")
Description: This function creates a query node satisfying the given expression
and names it as the node name supplied. Note: It is an error to create a query
node with an already existing node name.

gen-delete-query•
Optional Arguments: a query node name which is of type string.
Synopsis: (gen-delete-query "Quer-nd-l")
Description: This function deletes the query node supplied from the current net-
work.

gen-reset :
Optional Arguments: none.
Synopsis. (gen-reset)
Description: This function resets the current network to its original equilibrium
state.

gen-targetnode:
Optional Arguments: a nodc name of type string.
Synopsis: (gen-target-node "node-C")
Description: This function makes the supplied node the target node in the current
network and finds the measures of impact of the rest of the nodes in the network
with respect to this node.

gen-update :
Optional Arguments: none.
Synopsis: (gen-update)
Description: This function brings the current network into equilibrium.

Some of the window interface commands like revert-net, Zoom are not applicable in
TTY mode.

36

Appendix C - BaRT Functions Which Can be Called from Another Program

BaRT functions car. 'e ca:lId from other programs as long as the user is in a
Common LISP envirunment with or without PCL. Load the files exactly as in Appei-
dix B. The tty functions described in Appendix B can be used from other programs.
These functions prompt the user for missing arguments and take those values first.
Then they do come error checking and call the corresponding core functions defined in
the package bart. The user can call these functions with all the arguments directly.
This reduces :,me overhead and provides more contro.

All the node/link/network names in BaRT have internal names (pointers). Some
of these functionz take an internal name as an -igument. Three macros get-ptr, get-
ptr-i get-net have [teen provided to get the internal node/link/network from the external
name. To avoid confusion, we say internal name where an internal name should be
passed as an argument. Unles- explicitly stated that the argument is internal, all the
names are external. All external names are of type string and case sensitive.

The inner core functions are described later in this section. All these internal
functions return true unless the user calls them with an incorrect argument. In this
case, a list of n elements containing error information is returned. The user can pro-
cess this list however is most convenient for him. The first element in the list is the
atom &err&. The second element is an integer which can be decoded as follows:

1 -- The given network <arg> is illegal
2 -- New evidence given <arg> is not a list
3 -- All the elements in the given new evidence <arg> are not numbers
4 -- Length of the new evidence supplied <argl> is not equal to the rank of the node
<arg2>
5 -- New evidence is not supplied for the node <arg>

6 -- Illegal node name <arg>
7 -- File <arg> doesn't exist
8 -- Initial equilibrium has not yet been reached for the net <arg>
9 -- Illegal list of node names <arg>
10 -- Illegal list of link names <arg>

11 -- Illegal link name <arg>
12 -- Illegal list of object nams <arg>
13 -- Illegal object name <arg>
14 -- Illegal evidence node/link
15 -- node <arg> has more than 1 evidence
16 -- no evidence present for <arg> node
17 -- New evidence supplied is not a number
18 -- Given node is neither a belief node not a taxonomical node
19 -- No such evidence present at this node
20 -- Current network is not a belief network

21 -- Illegal arguments to the function.

37

22 -- 2nd argument passed to zoom is not a number
23 -- can't make a tax-net without components
24 - Belief network subtype <arg> is none of nil, ordinary, clustering, stochastic
25 -- Belief network type <arg> is none of tax-net, bel-net, or id-net
26 - parents <arg> in the given expression are not defined
27 - Illegal node value pairs <arg> in the given expression
28 - Illegal expression <arg>.
29 - Can't create node <arg>. A node by that name already exists,
which cannot be deleted.

30 -- Can't create node <arg>. A node by that name already exists. Delete that node
first.
31 -- llegal file name : <arg>
32 - megal network names: <arg>

The third through (n - 1)th elements are objects related to the error message. The last
(nth) element is a string which states the error message.

get-ptr : (macro)
Arguments: external name of a node or a link and an external name of a net-
work. Both are of type string.
Synopsis: (get-ptr "Coma" "med-net")
Description: Returns the internal pointer of the given node or link in the given
network. The second argument is optional. In the absence of the second argument,
the network defaults to the current network. Note that this macro returns only the
internal pointer or nil; it does not return an error message if the arguments are
incorrect. The user needs to use this wherever an internal node/link name is
required as an argument to the core functions.

get-ptr-i : (macro)
Arguments: an external name of a node or a link and an internal name of a net-
work. The first one is of type string, and the second one is pointer.
Synopsis: (get-ptr-i "Coma" cur-net-i)
Description: Returns the internal pointer to the node or the link in the given net-
work. If the internal network name is not given in the list of parameters, it
always defaults to the current network. Note that this macro returns only the
internal pointer or nil; it does not return an error message if the arguments are
incorrect.

get-net
Arguments: an external name of a network which is of type string.
Synopsis: (get-net "network-name")
Description: Returns the internal pointer of the given network. Note that this

38

macro returns only the internal pointer or nil; it does not return an error message
if the arguments are incorrect.

change-net:
Arguments: external name of a network of type string.

Synopsis: (change-net "alarm-net")
Description: Makes the given network current.

add-constraint
Arguments: a constraint name and an expression. Both are of type string.

Synopsis: (add-constraint "Constraint1" "(= Headaches True)")
Description: This function creates a constraint with the given name satisfying the
given expression in the current network.

int-gen-delete
Arguments: an internal node name of type pointer and an optional argument of
type integer. This optional argument is valid only wher the given node is a

chance node.
Synopsis: (int-gen-delete (get-ptr-i "Constraintl")) (int-gen-delete (get-ptr
"Queryl " "med-net")) (int-gen-delete (get-ptr-i "nodel") 0)

Description: This function is used to delete constraint/query/evidence nodes from

the network. In case of a query or constraint node, the second argument is not
valid. To delete an evidence node, the first argument must be the name of the

chance node where this evidence is attached to, and the second argument is an
integer corresponding to which evidence to delete. This integer should be between

0 and the number of evidences that node has. If 0 is passed as the second argu-
ment, then the system deletes all the evidences attached to this node. If a valid
number other than 0 is supplied then the system deletes that evidence from the

node.

act-inact
Arguments: an internal name of a constraint node of type ptr, and an integer

from the set (-10 1).
Synopsis: (act-inact (get-ptr "Constraintl" "med-net") 1)
Description: This function is used to inactivate/toggle/activate the given constraint

node depending on the value of the second argument -1/0/1 respectively.

delete-model

Arguments: a model name of type string.

Synopsis: (delete-model "model-2")

Description: This function deletes the given model and removes it from the sys-

tem completely.
39

add-self
Arguments: an internal name of a node of type pointer, and an evidence vector
of type list of numbers.
Synopsis: (add-self (get-ptr "Headaches" "med-net") '(1.0 0))
Description: This function adds the given evidence vector to the given node. The
length of the evidence vector should be equal to the cardinality of the node. Each
number in this vector should be between 0.0 and 1.0 and should add up to 1.0.

int-gen-write-evid-nodes
Arguments: an internal name of a network of type pointer and a file name of
type pathname.
Synopsis: (int-gen-write-evid-nodes (get-net "med-net") "evid-info-file")
Description: This function writes all the evidences in the given network into the
given filename. Note: the corresponding command to read evid nodes is not pro-
vided. Reading information about evidences is just to load the file containing the
information about evidences in a network. Example: (load "evid-info-file").

int-gen-load
Arguments: a file name of type pathname.
Synopsis: (int-gen-load "yourbartinputfile")
Description: This function reads the given file containing model and network
information suitable for bart to load and loads that file. Depending on the
compile-file option, this may create an internal compiled file suitable for bart to
load next time.

replace-prior
Arguments: an internal name of a node of type pointer, and a new prior probabil-
ity vector of type list of numbers.
Synopsis: (replace-prior (get-ptr "Cancer" "med-net") '(.2 .8))
Description: This function replaces the prior probability of the given top node to
the newly supplied prior probability vector. The length of this vector should be
equal to the cardinality of the top node and each number in this list should be
between 0.0 and 1.0. The total of all the numbers in this vector should add up to
1.0.

display-self
Arguments: an internal name of a node or a link of type pointer, and an output
stream of type stream.
Synopsis: (display-self (get-ptr "Coma" "med-net") t)
Description: Displays information about the given node/link on the given output
stream. This function takes two arguments: the internal name of a node or a link
and a stream and displays the information about the first argument onto the
stream. 40

add-query
Arguments: a query node name, and an expression. Both are of type sting.
Synopsis: (add-query "Queryl" "(= Cancer True)")
Description: This function creates a query node satisfying the given expression.

int-gen-revert-net
Arguments: an internal name of a network of type pointer.
Synopsis: (int-gen-revert-net (get-net "med-net"))
Description: This function resets the given network to its initial equilibrium state.
This removes all evidences attached and disables all the constraint nodes in that
network.

int-gen-target-node
Arguments: an internal name of a node of type string.
Synopsis: (int-gen-targetnode (get-ptr "Cancer" "med-net"))
Description: This function makes the given node a target node in the current net-
work and calculates all the benefit factors.

update-net
Arguments: an internal name of a network of type pointer.
Synopsis: (update-net (get-net "med-net"))
Description: This function brings the given network into equilibrium.

In addition to the above functions, the user has the ability to set some system
options directly. But this is strongly discouraged. Instead the user should use the func-
tions gen-set-update-belief* etc. described in appendix B to set the system options.

41

,U CDl

-. ~-0
*.j. -Uiv do cc

p . 0 .u j

LU

-1-

00

00

.......

U4

CD

0
U

U i%

IV IL HwL

I - . 0
L

I. U .
SI C .l CD

Jl 0 C3,

caU

m C).

0~

* j A* X

Um i

* U43

10,1

aa

Um

ICC'

4~to

7 I .

..

OL44

